A level set framework using a new incremental, robust Active Shape Model for object segmentation and tracking
نویسندگان
چکیده
Level set based approaches are widely used for image segmentation and object tracking. As these methods are usually driven by low level cues such as intensity, colour, texture, and motion they are not sufficient for many problems. To improve the segmentation and tracking results, shape priors were introduced into level set based approaches. Shape priors are generated by presenting many views a priori, but in many applications this a priori information is not available. In this paper, we present a level set based segmentation and tracking method that builds the shape model incrementally from new aspects obtained by segmentation or tracking. In addition, in order to tolerate errors during the segmentation process, we present a robust Active Shape Model, which provides a robust shape prior in each level set iteration step. For the tracking, we use a simple decision function to maintain the desired topology for multiple regions. We can even handle full occlusions and objects, which are temporarily hidden in containers by combining the decision function and our shape model. Our experiments demonstrate the improvement of the level set based segmentation and tracking using an Active Shape Model and the advantages of our incremental, robust method over standard approaches. 2008 Elsevier B.V. All rights reserved.
منابع مشابه
On-Line, Incremental Learning of a Robust Active Shape Model
Active Shape Models are commonly used to recognize and locate different aspects of known rigid objects. However, they require an off-line learning stage, such that the extension of an existing model requires a complete new retraining phase. Furthermore, learning is based on principal component analysis and requires perfect training data that is not corrupted by partial occlusions or imperfect s...
متن کاملIncremental Robust Learning an Active Shape Model
Active Shape Models are commonly used to recognize and locate different aspects of known rigid objects. However, they require an off-line learning stage, so that the extension of an existing model requires a completely new re-training phase. Furthermore, learning is based on principal component analysis (PCA) and requires perfect training data that is not corrupted by partial occlusions or impe...
متن کاملShape Priors in Medical Image Analysis: Extensions of the Level Set Method
The 3D medical image segmentation problem typically involves assigning labels to 3D pixels, called voxels, which comprise a given medical volume. In its simplest form the segmentation problem involves assigning the labels "part of the structure of interest" or "not part of the structure" to each voxel using locally measured properties and prior knowledge of human anatomy. Robust segmentation re...
متن کاملUsing a Novel Concept of Potential Pixel Energy for Object Tracking
Abstract In this paper, we propose a new method for kernel based object tracking which tracks the complete non rigid object. Definition the union image blob and mapping it to a new representation which we named as potential pixels matrix are the main part of tracking algorithm. The union image blob is constructed by expanding the previous object region based on the histogram feature. The pote...
متن کاملComputation Optical Flow Using Pipeline Architecture
Accurate estimation of motion from time-varying imagery has been a popular problem in vision studies, This information can be used in segmentation, 3D motion and shape recovery, target tracking, and other problems in scene analysis and interpretation. We have presented a dynamic image model for estimating image motion from image sequences, and have shown how the solution can be obtained from a ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Image Vision Comput.
دوره 27 شماره
صفحات -
تاریخ انتشار 2009